In situ formation and size control of gold nanoparticles into chitosan for nanocomposite surfaces with tailored wettability

Langmuir. 2012 Feb 28;28(8):3911-7. doi: 10.1021/la203893h. Epub 2012 Feb 16.

Abstract

The in situ formation of gold nanoparticles into the natural polymer chitosan is described upon pulsed laser irradiation. In particular, hydrogel-type films of chitosan get loaded with the gold precursor, chloroauric acid salt (HAuCl(4)), by immersion in its aqueous solution. After the irradiation of this system with increasing number of ultraviolet laser pulses, we observe the formation of gold nanoparticles with increasing density and decreasing size. Analytical studies using absorption measurements, atomic force microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy of the nanocomposite samples throughout the irradiation procedure reveal that under the specific irradiation conditions there are two competing mechanisms responsible for the nanoparticles production: the photoreduction of the precursor responsible for the rising growth of gold particles with increasing size and the subsequent photofragmentation of these particles into smaller ones. The described method allows the localized formation of gold nanoparticles into specific areas of the polymeric films, expanding its potential applications due to its patterning capability. The size and density control of the gold nanoparticles, obtained by the accurate increase of the laser irradiation time, is accompanied by the simultaneously controlled increase of the wettability of the obtained gold nanocomposite surfaces. The capability of tailoring the hydrophilicity of nanocomposite materials based on natural polymer and biocompatible gold nanoparticles provides new potentialities in microfluidics or lab on chip devices for blood analysis or drugs transport, as well as in scaffold development for preferential cells growth.

MeSH terms

  • Chitosan / chemistry*
  • Gold / chemistry*
  • Metal Nanoparticles / chemistry*
  • Metal Nanoparticles / ultrastructure
  • Microscopy, Atomic Force
  • Microscopy, Electron, Scanning
  • Nanocomposites / chemistry*
  • Wettability

Substances

  • Gold
  • Chitosan