Inkjet printing of reinforcing patterns for the mechanical stabilization of fragile polymeric microsieves

Langmuir. 2012 Feb 14;28(6):3316-21. doi: 10.1021/la2025236. Epub 2012 Jan 31.

Abstract

Inkjet printing is employed to apply a mechanically stable reinforcing pattern to polymeric microsieves prepared by float casting, where particles are used as molds for the pores. A mixture of silica particles and nonvolatile monomers is cast onto a water surface and subsequently photopolymerized to produce membranes consisting of a polymer film with embedded particles. These composite membranes are transferred onto an aluminum foil. Subsequently, a UV-curable ink is directly inkjet-printed onto the membranes in line patterns of grids or honeycombs and cured by UV radiation to create a mechanically reinforcing pattern. Afterwards, the particles and the aluminum foil are removed by chemical etching. The reinforcing pattern overcasts 40% of the previously manufactured membrane, is mechanically stable, and gives the microsieves such a robustness that they can be handled in further manufacturing processes.