Efficacy of vincristine administered via convection-enhanced delivery in a rodent brainstem tumor model documented by bioluminescence imaging

Childs Nerv Syst. 2012 Apr;28(4):565-74. doi: 10.1007/s00381-012-1690-3. Epub 2012 Jan 27.

Abstract

Purpose: Brain stem gliomas account for 20% of childhood brain tumors. Presently, there is no effective treatment for these tumors, and the prognosis remains poor. One reason for this is that chemotherapeutic drugs cannot cross the blood-brain barrier. In this study, we used a rodent brainstem tumor model, monitored both qualitatively and quantitatively, to examine the effectiveness of vincristine (VCR) administered via convection-enhanced delivery (CED).

Methods: C6 rat glioblastoma cells, transduced with an oncoretroviral plasmid containing a luciferase coding sequence, were inoculated into Fischer 344 rat brainstems. Tumor growth was monitored by bioluminescence intensity (BLI), and tumor volume was calculated from serial histopathologic sections. Therapeutic efficacy of VCR delivered via CED was assessed. Intravenous (I.V.) and intraperitoneal (I.P.) drug administration were used as a comparison for CED efficacy.

Results: BLI monitoring revealed progressive tumor growth in inoculated rats. Symptoms caused by tumor burden were evident 16-18 days after inoculation. BLI correlated quantitatively with tumor volume (r(2) = 0.9413), established by histopathological analysis of tumor growth within the pons. VCR administered through CED was more effective than I.V. or I.P. administration in reducing tumor size and increasing survival times. TUNEL assay results suggest that VCR induced glioblastoma cell apoptosis.

Conclusions: VCR administered by CED was effective in reducing tumors and prolonging survival time.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain Stem Neoplasms / diagnosis
  • Brain Stem Neoplasms / drug therapy*
  • Convection*
  • Disease Models, Animal*
  • Drug Delivery Systems / methods*
  • Luminescent Measurements* / methods
  • Male
  • Rats
  • Rats, Inbred F344
  • Rodentia
  • Treatment Outcome
  • Vincristine / administration & dosage*
  • Xenograft Model Antitumor Assays / methods

Substances

  • Vincristine