Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker's yeast used in tequila production

J Biosci Bioeng. 2012 May;113(5):614-8. doi: 10.1016/j.jbiosc.2011.12.015. Epub 2012 Jan 26.

Abstract

In tequila production, fermentation is an important step. Fermentation determines the ethanol productivity and organoleptic properties of the beverage. In this study, a yeast isolated from native residual agave must was identified as Kluyveromyces marxianus UMPe-1 by 26S rRNA sequencing. This yeast was compared with the baker's yeast Saccharomyces cerevisiae Pan1. Our findings demonstrate that the UMPe-1 yeast was able to support the sugar content of agave must and glucose up to 22% (w/v) and tolerated 10% (v/v) ethanol concentration in the medium with 50% cells survival. Pilot and industrial fermentation of agave must tests showed that the K. marxianus UMPe-1 yeast produced ethanol with yields of 94% and 96% with respect to fermentable sugar content (glucose and fructose, constituting 98%). The S. cerevisiae Pan1 baker's yeast, however, which is commonly used in some tequila factories, showed 76% and 70% yield. At the industrial level, UMPe-1 yeast shows a maximum velocity of fermentable sugar consumption of 2.27g·L(-1)·h(-1) and ethanol production of 1.38g·L(-1)·h(-1), providing 58.78g ethanol·L(-1) at 72h fermentation, which corresponds to 96% yield. In addition, the major and minor volatile compounds in the tequila beverage obtained from UMPe-1 yeast were increased. Importantly, 29 volatile compounds were identified, while the beverage obtained from Pan1-yeast contained fewer compounds and in lower concentrations. The results suggest that the K. marxianus UMPe-1 is a suitable yeast for agave must fermentation, showing high ethanol productivity and increased volatile compound content comparing with a S. cerevisiae baker's yeast used in tequila production.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agave / chemistry
  • Agave / metabolism*
  • Agave / microbiology
  • Alcoholic Beverages / microbiology*
  • Carbohydrate Metabolism
  • Ethanol / analysis
  • Ethanol / metabolism*
  • Fermentation*
  • Food Microbiology*
  • Kluyveromyces / genetics
  • Kluyveromyces / isolation & purification
  • Kluyveromyces / metabolism*
  • RNA, Ribosomal / genetics
  • Saccharomyces cerevisiae / metabolism*

Substances

  • RNA, Ribosomal
  • RNA, ribosomal, 26S
  • Ethanol