Ultrasmall water-soluble metal-iron oxide nanoparticles as T1-weighted contrast agents for magnetic resonance imaging

Phys Chem Chem Phys. 2012 Feb 28;14(8):2631-6. doi: 10.1039/c2cp23196d. Epub 2012 Jan 25.

Abstract

Using an improved hydrolysis method of inorganic salts assisted with water-bath incubation, ultrasmall water-soluble metal-iron oxide nanoparticles (including Fe(3)O(4), ZnFe(2)O(4) and NiFe(2)O(4) nanoparticles) were synthesized in aqueous solutions, which were used as T(1)-weighted contrast agents for magnetic resonance imaging (MRI). The morphology, structure, MRI relaxation properties and cytotoxicity of the as-prepared metal-iron oxide nanoparticles were characterized, respectively. The results showed that the average sizes of nanoparticles were about 4 nm, 4 nm and 5 nm for Fe(3)O(4), ZnFe(2)O(4) and NiFe(2)O(4) nanoparticles, respectively. Moreover, the nanoparticles have good water dispersibility and low cytotoxicity. The MRI test showed the strong T(1)-weighted, but the weak T(2)-weighted MRI performance of metal-iron oxide nanoparticles. The high T(1)-weighted MRI performance can be attributed to the ultrasmall size of metal-iron oxide nanoparticles. Therefore, the as-prepared metal-iron oxide nanoparticles with good water dispersibility and ultrasmall size can have potential applications as T(1)-weighted contrast agent materials for MRI.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Contrast Media*
  • Ferric Compounds / chemistry*
  • Magnetic Resonance Imaging / methods*
  • Metal Nanoparticles*
  • Microscopy, Electron, Transmission
  • Solubility
  • Water / chemistry*
  • X-Ray Diffraction

Substances

  • Contrast Media
  • Ferric Compounds
  • Water
  • ferric oxide