Full-scale experience with the deammonification process to treat high strength sludge water -- a case study

Water Sci Technol. 2012;65(3):447-55. doi: 10.2166/wst.2012.867.

Abstract

More stringent effluent criteria with regard to nitrogen calls for improved nutrient removal techniques in wastewater treatment plants (WWTPs). Besides optimisation of the liquid treatment train of the plants, attention has increasingly centred on the problem of return flows from sludge treatment. One of the most recent developments aimed at the reduction of this nitrogen load is deammonification which has been used at one of Ruhrverband's plants since 2002 by applying a moving bed system. To gain additional experience in operating this process, another full scale plant was modified in 2007 by integration of deammonification, using a SBR system with suspended biomass based on the DEMON(®) control scheme. By using seeding sludge from Strass WWTP in Austria, start-up has been achieved within only 1 day. After stable operation for several months, increasing nitrate concentrations were observed in the effluent of the system indicating growing activity of nitrite oxidising bacteria (NOB). Following severe process deterioration, it was decided to re-start the system again but the same behaviour, i.e. increasing levels of nitrate, was observed once again. Several approaches were used to suppress NOB organisms in full-scale without success, e.g. low oxygen levels and high free ammonia concentrations. Finally, the reduction of the aerobic cycle length during intermittent aeration down to 8 min, followed by an anoxic mixing period of only 18 min was successful in inhibiting the activity of NOB organisms, most probably due to their elevated lag-phase compared with ammonium oxidising bacteria. Today, nitrogen elimination that has been stabilised at more than 80% at a daily volumetric loading rate of 0.5 kg N/(m³ d). The total costs amount to €2.3/kg N(eli).

MeSH terms

  • Ammonia / chemistry*
  • Sewage / chemistry*
  • Time Factors
  • Waste Disposal, Fluid / methods*
  • Water / chemistry*

Substances

  • Sewage
  • Water
  • Ammonia