Locally enhanced concentration and detection of oligonucleotides in a plug-based microfluidic device

Lab Chip. 2012 Mar 7;12(5):923-31. doi: 10.1039/c2lc20917a. Epub 2012 Jan 13.

Abstract

We propose a novel technique that allows oligonucleotides with specific end-modification within a plug in a plug-based microfluidic device to undergo a locally enhanced concentration at the rear of the plug as the plug moves downstream. DNA was enriched and detected in situ upon exploiting a combined effect underlain by an entropic force induced through fluid shear (i.e. a hydrodynamic-repellent effect) and the interfacial adsorption (aqueous/oil interface) attributed to affinity. Flow fields within a plug were visualized quantitatively using micro-particle image velocimetry (micro-PIV); the distribution of the fluid shear strain rate explains how the hydrodynamic-repellent effect engenders a dumbbell-like region with an increased concentration of DNA. The concentration of FAM (6-carboxy-fluorescein)-labeled DNA (FC-DNA) and of TAMRA (tetramethyl-6-carboxyrhodamine)-labeled DNA (TC-DNA), respectively, and the hybridization of probe DNA (modified with FAM) with target DNA (modified with TAMRA) were investigated in devices; a confocal fluorescence microscope (CFM) was utilized to monitor the processes and to resolve the corresponding 2D patterns and 3D reconstruction of the DNA distribution in a plug. TC-DNA, but not FC-DNA, concentrating within a plug was affected by the combined effect so as to achieve a concentration factor (C(r)) twice that of FC-DNA because of the lipophilicity of TAMRA. Using fluorescence resonance-energy transfer (FRET), we characterized the hybridization of the DNA in a plug; the detection limit of a system, improved by virtue of the proposed technique (the locally enhanced concentration), for DNA detection was estimated to be 20-50 nM. This technique enables DNA to concentrate locally in a nL-pL free-solution plug, the locally enhanced concentration to profit the hybridization efficiency and the detection of DNA, prospectively serving as a versatile means to accomplish a rapid DNA detection in a small volume for a Lab-on-a-Chip (LOC) system.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Humans
  • Microfluidic Analytical Techniques* / instrumentation
  • Microfluidic Analytical Techniques* / methods
  • Oligonucleotides / chemistry*

Substances

  • Oligonucleotides