Redox and acid-base chemistry of 7,7,8,8-tetracyanoquinodimethane, 7,7,8,8-tetracyanoquinodimethane radical anion, 7,7,8,8-tetracyanoquinodimethane dianion, and dihydro-7,7,8,8-tetracyanoquinodimethane in acetonitrile

Anal Chem. 2012 Mar 6;84(5):2343-50. doi: 10.1021/ac2030514. Epub 2012 Feb 22.

Abstract

The chemistry and electrochemistry of TCNQ (7,7,8,8-tetracyanoquinodimethane), TCNQ(•-), TCNQ(2-), and H(2)TCNQ in acetonitrile (0.1 M Bu(4)NPF(6)) solution containing trifluoroacetic acid (TFA) has been studied by transient and steady-state voltammetric methods with the interrelationship between the redox and the acid-base chemistry being supported by simulations of the cyclic voltammograms. In the absence of acid, TCNQ and its anions undergo two electrochemically and chemically reversible one-electron processes. However, in the presence of TFA, the voltammetry is considerably more complex. The TCNQ(2-) dianion is protonated to form HTCNQ(-), which is oxidized to HTCNQ(•), and H(2)TCNQ which is electroinactive over the potential range of -1.0 to +1.0 V versus Ag/Ag(+). The monoreduced TCNQ(•-) radical anion is weakly protonated to give HTCNQ(•), which disproportionates to TCNQ and H(2)TCNQ. In acetonitrile, H(2)TCNQ deprotonates slowly, whereas in N,N-dimethylformamide or tetrahydrofuran, rapid deprotonation occurs to yield HTCNQ(-) as the major species. H(2)TCNQ is fully deprotonated to the TCNQ(2-) dianion in the presence of an excess concentration of the weak base, CH(3)COOLi. Differences in the redox and acid-base chemistry relative to the fluorinated derivative TCNQF(4) are discussed in terms of structural and electronic factors.