Unstable periodic orbits and noise in chaos computing

Chaos. 2011 Dec;21(4):047520. doi: 10.1063/1.3664349.

Abstract

Different methods to utilize the rich library of patterns and behaviors of a chaotic system have been proposed for doing computation or communication. Since a chaotic system is intrinsically unstable and its nearby orbits diverge exponentially from each other, special attention needs to be paid to the robustness against noise of chaos-based approaches to computation. In this paper unstable periodic orbits, which form the skeleton of any chaotic system, are employed to build a model for the chaotic system to measure the sensitivity of each orbit to noise, and to select the orbits whose symbolic representations are relatively robust against the existence of noise. Furthermore, since unstable periodic orbits are extractable from time series, periodic orbit-based models can be extracted from time series too. Chaos computing can be and has been implemented on different platforms, including biological systems. In biology noise is always present; as a result having a clear model for the effects of noise on any given biological implementation has profound importance. Also, since in biology it is hard to obtain exact dynamical equations of the system under study, the time series techniques we introduce here are of critical importance.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Computer Simulation
  • Models, Statistical*
  • Nonlinear Dynamics*