Corticomuscular coherence with and without additional task in the elderly

J Appl Physiol (1985). 2012 Mar;112(6):970-81. doi: 10.1152/japplphysiol.01079.2011. Epub 2012 Jan 5.

Abstract

Aging and dual-task paradigms often degrade fine motor performance, but the effects of aging on correlated neural activity between motor cortex and contracting muscle are unknown during dual tasks requiring fine motor performance. The purpose of this study was to compare corticomuscular coherence between young and elderly adults during the performance of a unilateral fine motor task and concurrent motor and cognitive tasks. Twenty-nine healthy young (18-38 yr) and elderly (61-75 yr) adults performed unilateral motor, bilateral motor, concurrent motor-cognitive, and cognitive tasks. Peak corticomuscular coherence between the electroencephalogram from the primary motor cortex and surface electromyogram from the first dorsal interosseous muscle was compared during steady abduction of the index finger with visual feedback. In the alpha-band (8-14 Hz), corticomuscular coherence was greater in elderly than young adults especially during the motor-cognitive task. The beta-band (15-32 Hz) corticomuscular coherence was higher in elderly than young adults across unilateral motor and dual tasks. In addition, beta-band corticomuscular coherence in the motor-cognitive task was negatively correlated with motor output error across young but not elderly adults. The results suggest that 1) corticomuscular coherence was increased in senior age with a greater influence of an additional cognitive task in the alpha-band and 2) individuals with greater beta-band corticomuscular coherence may exhibit more accurate motor output in young, but not elderly adults, during steady contraction with visual feedback.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adolescent
  • Adult
  • Age Factors
  • Aged
  • Cognition / physiology
  • Electroencephalography / methods
  • Electromyography / methods
  • Female
  • Fingers / physiology
  • Humans
  • Isometric Contraction / physiology
  • Male
  • Middle Aged
  • Motor Cortex / physiology*
  • Motor Skills / physiology*
  • Muscle, Skeletal / physiology*
  • Young Adult