The anti-angiogenic and anti-tumor activity of synthetic phenylpropenone derivatives is mediated through the inhibition of receptor tyrosine kinases

Eur J Pharmacol. 2012 Feb 29;677(1-3):22-30. doi: 10.1016/j.ejphar.2011.12.012. Epub 2011 Dec 20.

Abstract

Abnormal angiogenesis plays a critical role in the pathogenesis of various diseases such as cancer and chronic inflammation. A variety of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), exert their action through endothelial receptor tyrosine kinases (RTKs). The synthetic phenylpropenone derivatives, used in this study were the following: 1,3-diphenyl-propenone (DPhP), 3-phenyl-1-thiophen-2-yl-propenone (PhT2P), 3-phenyl-1-thiophen-3-yl-propenone (PhT3P) and 1-furan-2-yl-3-phenyl-propenone (FPhP). These derivatives were screened for their inhibitory effect on VEGF-induced angiogenesis in vitro using HUVECs and in vivo using chick chorioallantoic membrane (CAM). The order of anti-angiogenic activity was DPhP>FPhP>PhT3P>PhT2P. The most effective compound DPhP, also known as chalcone, showed weak VEGF receptor tyrosine kinase activity compared with the specific inhibitor, SU4312 (3-[[4-(dimethylamino)phenyl]methylene]-1,3-dihydro-2H-indol-2-one). However, DPhP also inhibited several other receptor tyrosine kinases including Tie-2, epithermal growth factor (EGF) receptor, EphB2, fibroblast growth factor (FGF) receptor 3 and insulin-like growth factor-1 (IGF-1) receptor, as revealed by a receptor tyrosine kinase array assay. In addition, the down-stream signaling, including ERK phosphorylation and NF-κB activation, after receptor activation was significantly inhibited by DPhP. Furthermore, in the HT29 human colon cancer cell-inoculated CAM assay, the tumor growth and tumor-induced angiogenesis was significantly inhibited by DPhP (10μg/ml). These results suggest that the simple flavonoid, DPhP (chalcone), has valuable potential as an antiangiogenic and anti-cancer agent, and its action is mediated through the inhibition of multi-target RTKs including VEGF receptor 2.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiogenesis Inhibitors / chemical synthesis
  • Angiogenesis Inhibitors / chemistry
  • Angiogenesis Inhibitors / pharmacology
  • Angiogenesis Inhibitors / therapeutic use
  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology
  • Antineoplastic Agents / therapeutic use
  • HT29 Cells
  • Human Umbilical Vein Endothelial Cells / cytology
  • Human Umbilical Vein Endothelial Cells / drug effects
  • Human Umbilical Vein Endothelial Cells / metabolism
  • Humans
  • Neovascularization, Pathologic / drug therapy*
  • Propiophenones / chemical synthesis
  • Propiophenones / chemistry*
  • Propiophenones / pharmacology*
  • Propiophenones / therapeutic use
  • Protein Kinase Inhibitors / chemical synthesis
  • Protein Kinase Inhibitors / chemistry
  • Protein Kinase Inhibitors / pharmacology
  • Protein Kinase Inhibitors / therapeutic use
  • Reactive Oxygen Species / metabolism
  • Receptor Protein-Tyrosine Kinases / antagonists & inhibitors*
  • Signal Transduction / drug effects
  • Vascular Endothelial Growth Factor A / pharmacology

Substances

  • Angiogenesis Inhibitors
  • Antineoplastic Agents
  • Propiophenones
  • Protein Kinase Inhibitors
  • Reactive Oxygen Species
  • Vascular Endothelial Growth Factor A
  • Receptor Protein-Tyrosine Kinases