Real-time PCR analysis of the intestinal microbiotas in peritoneal dialysis patients

Appl Environ Microbiol. 2012 Feb;78(4):1107-12. doi: 10.1128/AEM.05605-11. Epub 2011 Dec 16.

Abstract

Bifidobacterium and Lactobacillus can beneficially affect the host by producing acetic acid and lactic acid, which lower pH and thereby inhibit the growth of pathogens or allow the probiotic bacteria to compete with pathogens for epithelial adhesion sites and nutrients. The transmural migration of enteric organisms into the peritoneal cavity can cause peritonitis in peritoneal dialysis (PD) patients. We hypothesized that the composition of the intestinal microbiota with regard to Lactobacillus species and Bifidobacterium species differed between PD patients and healthy controls. The aim of the study was to investigate these differences by real-time PCR analysis of fecal samples. From 1 August 2009 to 31 March 2010, a total of 29 nondiabetic PD patients and 41 healthy controls from China Medical University Hospital were recruited after giving their informed consent. Fecal samples were collected from the PD patients and their age-matched counterparts in the morning using a standardized procedure. DNA extracted from these samples was analyzed by real-time PCR. All bifidobacteria, Bifidobacterium catenulatum, B. longum, B. bifidum, Lactobacillus plantarum, L. paracasei, and Klebsiella pneumoniae were less frequently detected in the patient samples. Dysbiosis (microbial imbalance) may impair intestinal barrier function and increase host vulnerability to pathogen invasion. Further studies are necessary to confirm our findings before clinical trials with probiotic supplementation in PD patients.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacteria / classification*
  • Bacteria / genetics*
  • Biota*
  • China
  • Gastrointestinal Tract / microbiology*
  • Humans
  • Metagenome*
  • Peritoneal Dialysis*
  • Real-Time Polymerase Chain Reaction*