Combined SPR and SERS microscopy in the Kretschmann configuration

J Phys Chem A. 2012 Jan 26;116(3):1000-7. doi: 10.1021/jp2107507. Epub 2012 Jan 17.

Abstract

A novel hybrid spectroscopic technique is proposed, combining surface plasmon resonance (SPR) with surface-enhanced Raman scattering (SERS) microscopy. A standard Raman microscope is modified to accommodate the excitation of surface plasmon-polaritons (SPPs) on flat metallic surfaces in the Kretschmann configuration, while retaining the capabilities of Raman microscopy. The excitation of SPPs is performed as in standard SPR-microscopy; namely, a beam with TM-polarization traverses off-axis a high numerical aperture oil immersion objective, illuminating at an angle the metallic film from the (glass) substrate side. The same objective is used to collect the full Kretschmann cone containing the SERS emission on the substrate side. The angular dispersion of the plasmon resonance is measured in reflectivity for different coupling conditions and, simultaneously, SERS spectra are recorded from Nile Blue (NB) molecules adsorbed onto the surface. A trade-off is identified between the conditions of optimum coupling to SPPs and the spot size (which is related to the spatial resolution). This technique opens new horizons for SERS microscopy with uniform enhancement on flat surfaces.