The influence of nanoparticle architecture on latex film formation and healing properties

J Colloid Interface Sci. 2012 Feb 15;368(1):21-33. doi: 10.1016/j.jcis.2011.10.077. Epub 2011 Nov 12.

Abstract

We present a study of chain interdiffusion in films formed by specially architectured PBMA nanoparticles by Förster Resonance Energy Transfer -FRET. Polymer nanoparticles contained linear chains with narrower molecular weight distributions than other previous reports, allowing a more detailed study. Apparent fractions of mixing and diffusion coefficients, determined from the quantum efficiency of energy transfer, were used to characterize the interdiffusion mechanism in the different films. The resistance of the films to dissolution by a good solvent was finally correlated with the interdiffusion results, in order to get information about film healing. We concluded that whenever interdiffusion occurs between nanoparticles containing linear chains and fully cross-linked nanoparticles, healing becomes more effective in spite of showing slower interdiffusion. We also observed that particles with longer chains are more effective for film healing. Finally, we concluded that interdiffusion occurs both ways across interfaces in blends formed by particles swollen with linear chains of different molecular weights.