Orientation of α-sexithiophene on friction-transferred polythiophene film

J Phys Chem B. 2012 Jan 12;116(1):189-93. doi: 10.1021/jp207487z. Epub 2011 Dec 22.

Abstract

Controlling the molecular orientation of the conjugated oligomer, α-sexithiophene (6T), is crucial to improve organic optoelectronic device performance. Most 6T molecules evaporated onto quartz and SiO(2)/Si substrates orient nearly perpendicular to the substrate. Here, we report the formation of oriented thin films of 6T on in-plane-oriented polythiophene (PT) films formed by the friction-transfer method. 6T was evaporated onto oriented PT films under vacuum. The films were investigated by polarized optical microscopy, polarized ultraviolet-visible light (UV-vis) absorption spectroscopy, and grazing incidence X-ray diffraction measurement (GIXD). In all spectra, larger absorbance derived from PT and 6T was observed, in parallel polarization to the friction direction, compared to that of orthogonal polarization. These results indicate that the 6T molecular axis is aligned in the friction direction (PT chain direction) of PT films. GIXD also confirmed that the 6T molecular axis was aligned parallel to the PT chain axis. In contrast, 6T molecules evaporated onto quartz and poly(ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-coated silicon substrates aligned nearly perpendicular to the substrate. These results indicate that oriented PT films induce 6T orientation parallel to the PT chain direction.