Nonlinear response of GaAs gratings in the extraordinary transmission regime

Opt Lett. 2011 Dec 1;36(23):4674-6. doi: 10.1364/OL.36.004674.

Abstract

We theoretically describe a way to enhance harmonic generation from subwavelength slits milled on semiconductor substrates in strongly absorptive regimes. The metal-like response typical of semiconductors, like GaAs and GaP, triggers enhanced transmission and nonlinear optical phenomena in the deep UV range. We numerically study correlations between linear and nonlinear responses and their intricacies in infinite arrays, and highlight differences between nonlinear surface and magnetic sources, and intrinsic χ((2)) and χ((3)) contributions to harmonic generation. The results show promising efficiencies at wavelengths below 120 nm, and reveal coupling of TE and TM polarizations for pump and harmonic signals. A downconversion process that can regenerate pump photons with polarization orthogonal to the incident pump is also discussed.