Reduced calcium/calmodulin-dependent protein kinase II activity in the hippocampus is associated with impaired cognitive function in MPTP-treated mice

J Neurochem. 2012 Feb;120(4):541-51. doi: 10.1111/j.1471-4159.2011.07608.x. Epub 2012 Jan 6.

Abstract

Parkinson's disease (PD) patients frequently reveal deficit in cognitive functions during the early stage in PD. The dopaminergic neurotoxin, MPTP-induced neurodegeneration causes an injury of the basal ganglia and is associated with PD-like behaviors. In this study, we demonstrated that deficits in cognitive functions in MPTP-treated mice were associated with reduced calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation and impaired long-term potentiation (LTP) induction in the hippocampal CA1 region. Mice were injected once a day for 5days with MPTP (25mg/kg i.p.). The impaired motor coordination was observed 1 or 2week after MPTP treatment as assessed by rota-rod and beam-walking tasks. In immunoblotting analyses, the levels of tyrosine hydroxylase protein and CaMKII autophosphorylation in the striatum were significantly decreased 1week after MPTP treatment. By contrast, deficits of cognitive functions were observed 3-4weeks after MPTP treatment as assessed by novel object recognition and passive avoidance tasks but not Y-maze task. Impaired LTP in the hippocampal CA1 region was also observed in MPTP-treated mice. Concomitant with impaired LTP induction, CaMKII autophosphorylation was significantly decreased 3weeks after MPTP treatment in the hippocampal CA1 region. Finally, the reduced CaMKII autophosphorylation was closely associated with reduced AMPA-type glutamate receptor subunit 1 (GluR1; Ser-831) phosphorylation in the hippocampal CA1 region of MPTP-treated mice. Taken together, decreased CaMKII activity with concomitant impaired LTP induction in the hippocampus likely account for the learning disability observed in MPTP-treated mice.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine / pharmacology*
  • Animals
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2 / antagonists & inhibitors*
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2 / metabolism*
  • Cognition Disorders / enzymology*
  • Enzyme Activation / drug effects
  • Enzyme Activation / physiology
  • Hippocampus / drug effects
  • Hippocampus / enzymology*
  • Long-Term Potentiation / drug effects
  • Long-Term Potentiation / physiology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Phosphorylation / drug effects
  • Phosphorylation / physiology
  • Rotarod Performance Test / methods

Substances

  • 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2