The oxidative degradation of dibenzoazepine derivatives by cerium(IV) complexes in acidic sulfate media

Dalton Trans. 2012 Jan 28;41(4):1259-67. doi: 10.1039/c1dt11664a. Epub 2011 Nov 29.

Abstract

The kinetics of the oxidation of imipramine and desipramine using cerium(IV) complexes were studied in the presence of a large excess of azepine derivative (TCA) in acidic sulfate media using UV-Vis spectroscopy. The reaction proceeds via dibenzoazepine radical formation, identified by EPR measurements. The kinetics of the first degradation step were studied independently of the further slower degradation reactions. Linear dependences, with zero intercept, of the pseudo-first-order rate constants (k(obs)) on [TCA] were established for both dibenzoazepine radical formation processes. Rates of reactions decreased with increasing concentration of the H(+) ion indicating that cerium(IV) as well as both reductants exist in an equilibrium with their protolytic forms. The activation parameters for the degradation of dibenzoazepine derivatives in the first oxidation stage were as follows: ΔH(≠) = 39 ± 2 kJ mol(-1), ΔS(≠) = -28 ± 8 J K(-1) mol(-1) for imipramine and ΔH(≠) = 39 ± 2 kJ mol(-1), ΔS(≠) = -28 ± 6 J K(-1) mol(-1) for desipramine, respectively. Imipramine and desipramine radicals dimerized leading to an intermediate radical dimer, which decayed in a first-order consecutive decay process. These two further reactions proceed with rates which are characterized by non-linear dependences of the pseudo-first-order rate constants (k(obs)) on [TCA]. The degradation reaction of the intermediate radical dimer leads to an uncharged dimer as a final product. Mechanistic consequences of all the results are discussed.