Alzheimer's disease: pathological mechanisms and the beneficial role of melatonin

J Pineal Res. 2012 Mar;52(2):167-202. doi: 10.1111/j.1600-079X.2011.00937.x. Epub 2011 Nov 23.

Abstract

Alzheimer's disease (AD) is a highly complex neurodegenerative disorder of the aged that has multiple factors which contribute to its etiology in terms of initiation and progression. This review summarizes these diverse aspects of this form of dementia. Several hypotheses, often with overlapping features, have been formulated to explain this debilitating condition. Perhaps the best-known hypothesis to explain AD is that which involves the role of the accumulation of amyloid-β peptide in the brain. Other theories that have been invoked to explain AD and summarized in this review include the cholinergic hypothesis, the role of neuroinflammation, the calcium hypothesis, the insulin resistance hypothesis, and the association of AD with peroxidation of brain lipids. In addition to summarizing each of the theories that have been used to explain the structural neural changes and the pathophysiology of AD, the potential role of melatonin in influencing each of the theoretical processes involved is discussed. Melatonin is an endogenously produced and multifunctioning molecule that could theoretically intervene at any of a number of sites to abate the changes associated with the development of AD. Production of this indoleamine diminishes with increasing age, coincident with the onset of AD. In addition to its potent antioxidant and anti-inflammatory activities, melatonin has a multitude of other functions that could assist in explaining each of the hypotheses summarized above. The intent of this review is to stimulate interest in melatonin as a potentially useful agent in attenuating and/or delaying AD.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Alzheimer Disease / etiology
  • Alzheimer Disease / metabolism*
  • Alzheimer Disease / physiopathology
  • Animals
  • Humans
  • Melatonin / metabolism*

Substances

  • Melatonin