Tin oxide-surface modified anatase titanium(IV) dioxide with enhanced UV-light photocatalytic activity

Phys Chem Chem Phys. 2012 Jan 14;14(2):705-11. doi: 10.1039/c1cp22708d. Epub 2011 Nov 16.

Abstract

[Sn(acac)(2)]Cl(2) is chemisorbed on the surfaces of anatase TiO(2)via ion-exchange between the complex ions and H(+) released from the surface Ti-OH groups without liberation of the acetylacetonate ligand (Sn(acac)(2)/TiO(2)). The post-heating at 873 K in air forms tin oxide species on the TiO(2) surface in a highly dispersed state on a molecular scale ((SnO(2))(m)/TiO(2)). A low level of this p block metal oxide surface modification (~0.007 Sn ions nm(-2)) accelerates the UV-light-activities for the liquid- and gas-phase reactions, whereas in contrast to the surface modification with d block metal oxides such as FeO(x) and NiO, no visible-light response is induced. Electrochemical measurements and first principles density functional theory (DFT) calculations for (SnO(2))(m)/TiO(2) model clusters (m = 1, 2) indicate that the bulk (TiO(2))-to-surface interfacial electron transfer (BS-IET) enhances charge separation and the following electron transfer to O(2) to increase the photocatalytic activity.