CB₁ receptor activation inhibits neuronal and astrocytic intermediary metabolism in the rat hippocampus

Neurochem Int. 2012 Jan;60(1):1-8. doi: 10.1016/j.neuint.2011.10.019. Epub 2011 Nov 9.

Abstract

Cannabinoid CB₁ receptor (CB₁R) activation decreases synaptic GABAergic and glutamatergic transmission and it also controls peripheral metabolism. Here we aimed at testing with ¹³C NMR isotopomer analysis whether CB₁Rs could have a local metabolic role in brain areas having high CB₁R density, such as the hippocampus. We labelled hippocampal slices with the tracers [2-¹³C]acetate, which is oxidized in glial cells, and [U-¹³C]glucose, which is metabolized both in glia and neurons, to evaluate metabolic compartmentation between glia and neurons. The synthetic CB₁R agonist WIN55212-2 (1 μM) significantly decreased the metabolism of both [2-¹³C]acetate (-11.6±2.0%) and [U-¹³C]glucose (-11.2±3.4%) in the tricarboxylic acid cycle that contributes to the glutamate pool. WIN55212-2 also significantly decreased the metabolism of [U-¹³C]glucose (-11.7±4.0%) but not that of [2-¹³C]acetate contributing to the pool of GABA. These effects of WIN55212-2 were prevented by the CB₁R antagonist AM251 (500 nM). These results thus suggest that CB₁Rs might be present also in hippocampal astrocytes besides their well-known neuronal localization. Indeed, confocal microscopy analysis revealed the presence of specific CB₁R immunoreactivity in astrocytes and pericytes throughout the hippocampus. In conclusion, CB₁Rs are able to control hippocampal intermediary metabolism in both neuronal and glial compartments, which suggests new alternative mechanisms by which CB₁Rs control cell physiology and afford neuroprotection.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Astrocytes / cytology
  • Astrocytes / metabolism*
  • Benzoxazines / pharmacology
  • Glucose / metabolism
  • Glutamic Acid / metabolism
  • Hippocampus / cytology
  • Hippocampus / drug effects
  • Hippocampus / metabolism*
  • Magnetic Resonance Spectroscopy
  • Male
  • Morpholines / pharmacology
  • Naphthalenes / pharmacology
  • Neurons / cytology
  • Neurons / metabolism*
  • Rats
  • Rats, Wistar
  • Receptor, Cannabinoid, CB1 / agonists
  • Receptor, Cannabinoid, CB1 / antagonists & inhibitors
  • Receptor, Cannabinoid, CB1 / metabolism*
  • Receptors, Drug / agonists
  • Receptors, Drug / antagonists & inhibitors
  • gamma-Aminobutyric Acid / metabolism

Substances

  • Benzoxazines
  • Morpholines
  • Naphthalenes
  • Receptor, Cannabinoid, CB1
  • Receptors, Drug
  • Glutamic Acid
  • gamma-Aminobutyric Acid
  • (3R)-((2,3-dihydro-5-methyl-3-((4-morpholinyl)methyl)pyrrolo-(1,2,3-de)-1,4-benzoxazin-6-yl)(1-naphthalenyl))methanone
  • Glucose