Quantitative trait loci for cold tolerance of rice recombinant inbred lines in low temperature environments

Mol Cells. 2011 Dec;32(6):579-87. doi: 10.1007/s10059-011-0186-4. Epub 2011 Nov 9.

Abstract

Low temperature is one of the major environmental stresses in rice cultivation in high-altitude and high-latitude regions. In this study, we cultivated a set of recombinant inbred lines (RIL) derived from Dasanbyeo (indica) / TR22183 (japonica) crosses in Yanji (high-latitude area), Kunming (high-altitude area), Chuncheon (cold water irrigation) and Suwon (normal) to evaluate the main effects of quantitative trait loci (QTL) and epistatic QTL (E-QTL) with regard to their interactions with environments for cold-related traits. Six QTLs for spikelet fertility (SF) were identified in three cold treatment locations. Among them, four QTLs on chromosomes 2, 7, 8, and 10 were validated by several near isogenic lines (NILs) under cold treatment in Chuncheon. A total of 57 QTLs and 76 E-QTLs for nine cold-related traits were identified as distributing on all 12 chromosomes; among them, 19 QTLs and E-QTLs showed significant interactions of QTLs and environments (QEIs). The total phenotypic variation explained by each trait ranged from 13.2 to 29.1% in QTLs, 10.6 to 29.0% in EQTLs, 2.2 to 8.8% in QEIs and 1.0% to 7.7% in E-QTL × environment interactions (E-QEIs). These results demonstrate that epistatic effects and QEIs are important properties of QTL parameters for cold tolerance at the reproductive stage. In order to develop cold tolerant varieties adaptable to wide-ranges of cold stress, a strategy facilitating marker-assisted selection (MAS) is being adopted to accumulate QTLs identified from different environments.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Altitude
  • Chromosome Mapping
  • Cold Temperature
  • Genes, Plant
  • Genetic Pleiotropy
  • Inbreeding
  • Oryza / genetics*
  • Oryza / physiology
  • Phenotype
  • Quantitative Trait Loci*
  • Reproduction
  • Stress, Physiological*