A theory of single-electron non-adiabatic tunneling through a small metal nanoparticle with due account of the strong interaction of valence electrons with phonons of the condensed matter environment

J Chem Phys. 2011 Nov 7;135(17):174705. doi: 10.1063/1.3656767.

Abstract

A theory of electrochemical behavior of small metal nanoparticles (NPs) which is governed both by the charging effect and the effect of the solvent reorganization on the dynamic of the electron transfer (ET) is considered under ambient conditions. The exact expression for the rate constant of ET from an electrode to NP which is valid for all values of the reorganization free energy E(r), bias voltage, and overpotential is obtained in the non-adiabatic limit. The tunnel current/overpotential relations are studied and calculated for different values of the bias voltage and E(r). The effect of E(r) on the full width at half maximum of the charging peaks is investigated at different values of the bias voltage. The differential conductance/bias voltage and the tunnel current/bias voltage dependencies are also studied and calculated. It is shown that, at room temperature, the pronounced Coulomb blockade oscillations in the differential conductance/bias voltage curves and the noticeable Coulomb staircase in the tunnel current/bias voltage relations are observed only at rather small values of E(r) in the case of the strongly asymmetric tunneling contacts.