DIGE and iTRAQ as biomarker discovery tools in aquatic toxicology

Ecotoxicol Environ Saf. 2012 Feb;76(2):3-10. doi: 10.1016/j.ecoenv.2011.09.020. Epub 2011 Nov 5.

Abstract

Molecular approaches in ecotoxicology have greatly enhanced mechanistic understanding of the impact of aquatic pollutants in organisms. These methods have included high throughput Omics technologies, including quantitative proteomics methods such as 2D differential in-gel electrophoresis (DIGE) and isobaric tagging for relative and absolute quantitation (iTRAQ). These methods are becoming more widely used in ecotoxicology studies to identify and characterize protein bioindicators of adverse effect. In teleost fish, iTRAQ has been used successfully in different fish species (e.g. fathead minnow, goldfish, largemouth bass) and tissues (e.g. hypothalamus and liver) to quantify relative protein abundance. Of interest for ecotoxicology is that many proteins commonly utilized as bioindicators of toxicity or stress are quantifiable using iTRAQ on a larger scale, providing a global baseline of biological effect from which to assess changes in the proteome. This review highlights the successes to date for high throughput quantitative proteomics using DIGE and iTRAQ in aquatic toxicology. Current challenges for the iTRAQ method for biomarker discovery in fish are the high cost and the lack of complete annotated genomes for teleosts. However, the use of protein homology from teleost fishes in protein databases and the introduction of hybrid LTQ-FT (Linear ion trap-Fourier transform) mass spectrometers with high resolution, increased sensitivity, and high mass accuracy are able to improve significantly the protein identification rates. Despite these challenges, initial studies utilizing iTRAQ for ecotoxicoproteomics have exceeded expectations and it is anticipated that the use of non-gel based quantitative proteomics will increase for protein biomarker discovery and for characterization of chemical mode of action.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Aquatic Organisms / drug effects
  • Aquatic Organisms / metabolism
  • Biomarkers / metabolism
  • Ecotoxicology / methods*
  • Electrophoresis, Gel, Two-Dimensional
  • Environmental Monitoring / methods
  • Fishes / metabolism
  • Liver / drug effects
  • Liver / metabolism
  • Mass Spectrometry / methods
  • Proteins / analysis
  • Proteins / metabolism
  • Proteome / metabolism

Substances

  • Biomarkers
  • Proteins
  • Proteome