Mechanism of perchlorate formation on boron-doped diamond film anodes

Environ Sci Technol. 2011 Dec 15;45(24):10582-90. doi: 10.1021/es202534w. Epub 2011 Nov 16.

Abstract

This research investigated the mechanism of perchlorate (ClO(4)(-)) formation from chlorate (ClO(3)(-)) on boron-doped diamond (BDD) film anodes by use of a rotating disk electrode reactor. Rates of ClO(4)(-) formation were determined as functions of the electrode potential (2.29-2.70 V/standard hydrogen electrode, SHE) and temperature (10-40 °C). At all applied potentials and a ClO(3)(-) concentration of 1 mM, ClO(4)(-) production rates were zeroth-order with respect to ClO(4)(-) concentration. Experimental and density functional theory (DFT) results indicate that ClO(3)(-) oxidation proceeds via a combination of direct electron transfer and hydroxyl radical oxidation with a measured apparent activation energy of 6.9 ± 1.8 kJ·mol(-1) at a potential of 2.60 V/SHE. DFT simulations indicate that the ClO(4)(-) formation mechanism involves direct oxidation of ClO(3)(-) at the BDD surface to form ClO(3)(•), which becomes activationless at potentials > 0.76 V/SHE. Perchloric acid is then formed via the activationless homogeneous reaction between ClO(3)(•) and OH(•) in the diffuse layer next to the BDD surface. DFT simulations also indicate that the reduction of ClO(3)(•) can occur at radical sites on the BDD surface to form ClO(3)(-) and ClO(2), which limits the overall rate of ClO(4)(-) formation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Boron / chemistry*
  • Diamond / chemistry*
  • Electrodes
  • Environmental Restoration and Remediation / methods
  • Oxidation-Reduction
  • Perchlorates / analysis
  • Perchlorates / chemical synthesis*
  • Water Pollutants, Chemical / analysis
  • Water Pollutants, Chemical / chemical synthesis*

Substances

  • Perchlorates
  • Water Pollutants, Chemical
  • Diamond
  • Boron
  • perchlorate