Application of impulse oscillometry for within-breath analysis in patients with chronic obstructive pulmonary disease: pilot study

BMJ Open. 2011 Jan 1;1(2):e000184. doi: 10.1136/bmjopen-2011-000184.

Abstract

Background: The impulse oscillometry is increasingly used for assessing the oscillatory mechanics of the respiratory system. The within-breath behaviour of the oscillatory mechanics in chronic obstructive pulmonary disease (COPD) is a well-known physiological feature. The purpose of this study was to develop a new approach for assessing this feature using impulse oscillometry.

Methods: The oscillatory mechanics were assessed by a commercially available impulse oscillometry device. The respiratory system resistance (Rrs) and reactance (Xrs) were measured during tidal breathing in patients with COPD (n=39) and healthy subjects (n=5). Selected data, the Rrs at 5 Hz (R5), Rrs at 20 Hz (R20), Xrs at 5 Hz (X5), and resonant frequency of Xrs (Fres) every 0.2 s, were extracted from the device. These data were divided into eight time fractions during the respiratory cycle to form averaged respiratory phases.

Results: The time courses of the R5 and X5 were notably dependent on the respiratory cycles in patients with COPD, while there was little such dependency in healthy subjects. Irrespective of respiratory phase, R5 and Fres increased, and X5 fell to a more negative level in patients with COPD in a severity-dependent fashion. The increase in the R5 and negative level in the X5 were more prominent in the middle of the expiratory phase. The severity dependence in the R20 was relatively small compared with that in the R5.

Conclusions: The results of this study suggest that impulse oscillometry can assess the within-breath behaviour of the oscillatory mechanics with high temporal resolution, which may be helpful for evaluating the severity of COPD. Further studies are needed to reveal which biomarkers obtained with this approach would be suitable for evaluating the airway obstruction.

Publication types

  • Research Support, Non-U.S. Gov't