Use of a field lens for improving the overlap function of a lidar system employing an optical fiber in the receiver assembly

Appl Opt. 2011 Oct 1;50(28):5538-44. doi: 10.1364/AO.50.005538.

Abstract

This paper presents a method to compute the overlap function of a lidar system in which a step-index optical fiber (or a bundle of such fibers) is used to carry the light collected by the telescope to the photoreceiver and a field lens is placed between the telescope and the optical fiber to increase the receiver field of view (FOV). The use of field lenses is a classical way to increase the FOV of radiometric systems (such as the receiving part of a lidar) when there is no numerical aperture (NA) limitation after the lens. However, when such a limitation exists, as in the case studied here, it will place a limit on the maximum attainable FOV. In the case of lidars, which have range-resolution capabilities, the limited FOV has an effect on the fraction of power coming from scattering volumes at different ranges that actually reaches the photodetector. This fraction is a function (the so-called overlap function) of the range of the scattering volume and its behavior has an impact on the accuracy of the retrievals. The application of the method developed in this paper shows that, in spite of the fiber NA limit, in practical situations the goal is attained of making the overlap function steeper and reaching higher values by using a field lens.