Markov state model reveals folding and functional dynamics in ultra-long MD trajectories

J Am Chem Soc. 2011 Nov 16;133(45):18413-9. doi: 10.1021/ja207470h. Epub 2011 Oct 26.

Abstract

Two strategies have been recently employed to push molecular simulation to long, biologically relevant time scales: projection-based analysis of results from specialized hardware producing a small number of ultralong trajectories and the statistical interpretation of massive parallel sampling performed with Markov state models (MSMs). Here, we assess the MSM as an analysis method by constructing a Markov model from ultralong trajectories, specifically two previously reported 100 μs trajectories of the FiP35 WW domain (Shaw, D. E. Science 2010, 330, 341-346). We find that the MSM approach yields novel insights. It discovers new statistically significant folding pathways, in which either beta-hairpin of the WW domain can form first. The rates of this process approach experimental values in a direct quantitative comparison (time scales of 5.0 μs and 100 ns), within a factor of ∼2. Finally, the hub-like topology of the MSM and identification of a holo conformation predicts how WW domains may function through a conformational selection mechanism.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Markov Chains
  • Models, Chemical*
  • Models, Molecular
  • Molecular Dynamics Simulation*
  • Protein Folding
  • Proteins / chemistry*

Substances

  • Proteins