Catecholamines up integrates dopamine synthesis and synaptic trafficking

J Neurochem. 2011 Dec;119(6):1294-305. doi: 10.1111/j.1471-4159.2011.07517.x. Epub 2011 Nov 3.

Abstract

The highly reactive nature of dopamine renders dopaminergic neurons vulnerable to oxidative damage. We recently demonstrated that loss-of-function mutations in the Drosophila gene Catecholamines up (Catsup) elevate dopamine pools but, paradoxically, also confer resistance to paraquat, an herbicide that induces oxidative stress-mediated toxicity in dopaminergic neurons. We now report a novel association of the membrane protein, Catsup, with GTP cyclohydrolase rate-limiting enzyme for tetrahydrobiopterin (BH(4)) biosynthesis and tyrosine hydroxylase, rate-limiting enzyme for dopamine biosynthesis, which requires BH(4) as a cofactor. Loss-of-function Catsup mutations cause dominant hyperactivation of both enzymes. Elevated dopamine levels in Catsup mutants coincide with several distinct characteristics, including hypermobility, minimal basal levels of 3,4-dihydroxy-phenylacetic acid, an oxidative metabolite of dopamine, and resistance to the vesicular monoamine transporter inhibitor, reserpine, suggesting that excess dopamine is synaptically active and that Catsup functions in the regulation of synaptic vesicle loading and release of dopamine. We conclude that Catsup regulates and links the dopamine synthesis and transport networks.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Administration, Oral
  • Animals
  • Animals, Genetically Modified
  • Antipsychotic Agents / administration & dosage
  • Dopamine / metabolism*
  • Dopamine Agents / administration & dosage
  • Dopaminergic Neurons / metabolism*
  • Drosophila
  • Drosophila Proteins / genetics
  • Drosophila Proteins / metabolism*
  • Electrochemistry
  • Female
  • GTP Cyclohydrolase / metabolism
  • Green Fluorescent Proteins / genetics
  • Herbicides / administration & dosage
  • Immunoprecipitation
  • Levodopa / administration & dosage
  • Locomotion / drug effects
  • Locomotion / physiology
  • Male
  • Monoiodotyrosine / administration & dosage
  • Paraquat / administration & dosage
  • Protein Transport / drug effects
  • Protein Transport / genetics
  • Reserpine / administration & dosage
  • Synapses / drug effects
  • Synapses / genetics*
  • Tyrosine 3-Monooxygenase / genetics
  • Vesicular Monoamine Transport Proteins / genetics

Substances

  • 3-iodotyrosine
  • Antipsychotic Agents
  • Dopamine Agents
  • Drosophila Proteins
  • Herbicides
  • Vesicular Monoamine Transport Proteins
  • catsup protein, Drosophila
  • Green Fluorescent Proteins
  • Levodopa
  • Reserpine
  • Tyrosine 3-Monooxygenase
  • GTP Cyclohydrolase
  • Monoiodotyrosine
  • Paraquat
  • Dopamine