Reactions of ZnR2 compounds with dibenzoyl: characterisation of the alkyl-transfer products and a striking product-inhibition effect

Chemistry. 2011 Nov 4;17(45):12713-21. doi: 10.1002/chem.201101997. Epub 2011 Sep 28.

Abstract

The first systematic theoretical and experimental studies of reaction systems involving ZnR(2) (R=Me, Et or tBu) with dibenzoyl (dbz) as a non-innocent ligand revealed that the character of the metal-bonded R group as well as the ratio of the reagents and the reaction temperature significantly modulate the reaction outcome. DFT calculations showed four stable minima for initial complexes formed between ZnR(2) and dbz and the most stable structure proved to be the 2:1 adduct; among the 1:1 adducts three structural isomers were found of which the most stable complex had the monodentate coordination mode and the chelate complex with the s-cis conformation of the dbz unit appeared to be the least stable form. Interestingly, the reaction involving ZnMe(2) did not lead to any alkylation product, whereas the employment of ZntBu(2) resulted in full conversion of dbz to the O-alkylated product [tBuZn{PhC(O)C(OtBu)Ph}] already at -20 °C. A more complicated system was revealed for the reaction of dbz with ZnEt(2). Treatment of a solution of dbz in toluene with one equivalent of ZnEt(2) at room temperature afforded a mixture of the O- and C-alkylated products [EtZn{PhC(O)C(OEt)Ph}] and [EtZn{OC(Ph)C(O)(Et)Ph}], respectively. The formation of the C-alkylated product was suppressed by decreasing the initial reaction temperature to -20 °C. Moreover, in the case of the dbz/ZnEt(2) system monitoring of the dbz conversion over the entire reaction course revealed a product inhibition effect, which highlights possible participation of multiple equilibria of different zinc alkoxide/ZnEt(2) aggregates. Diffusion NMR studies indicated that dbz forms an adduct with the O-alkylated product, which is a competent species for executing the inhibition of the alkylation event.