Synaptic mitochondrial pathology in Alzheimer's disease

Antioxid Redox Signal. 2012 Jun 15;16(12):1467-75. doi: 10.1089/ars.2011.4277. Epub 2011 Dec 15.

Abstract

Significance: Synaptic degeneration, an early pathological feature in Alzheimer's disease (AD), is closely correlated to impaired cognitive function and memory loss. Recent studies suggest that involvement of amyloid-beta peptide (Aβ) in synaptic mitochondrial alteration underlies these synaptic lesions. Thus, to understand the Aβ-associated synaptic mitochondrial perturbations would fortify our understanding of synaptic stress in the pathogenesis of AD.

Recent advances: Increasing evidence suggests that synaptic mitochondrial dysfunction is strongly associated with synaptic failure in many neurodegenerative diseases including AD. Based on recent findings in human AD subjects, AD animal models, and AD cellular models, synaptic mitochondria undergo multiple malfunctions including Aβ accumulation, increased oxidative stress, decreased respiration, and compromised calcium handling capacity, all of which occur earlier than changes seen in nonsynaptic mitochondria before predominant AD pathology. Of note, the impact of Aβ on mitochondrial motility and dynamics exacerbates synaptic mitochondrial alterations.

Critical issues: Synaptic mitochondria demonstrate early deficits in AD; in combination with the role that synaptic mitochondria play in sustaining synaptic functions, deficits in synaptic mitochondria may be a key factor involved in an early synaptic pathology in AD.

Future directions: The importance of synaptic mitochondria in supporting synapses and the high vulnerability of synaptic mitochondria to Aβ make them a promising target of new therapeutic strategy for AD.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Alzheimer Disease / metabolism*
  • Animals
  • Humans
  • Mitochondria / metabolism*
  • Oxidative Stress / physiology
  • Synapses / metabolism*