Clinical reagents of GM-CSF and IFN-α induce the generation of functional chronic myeloid leukemia dendritic cells in vitro

Cytotechnology. 2012 Jan;64(1):75-81. doi: 10.1007/s10616-011-9393-2. Epub 2011 Sep 22.

Abstract

Dendritic cells (DCs) have been successfully induced in vitro from chronic myeloid leukemia (CML) cells, which may provide a promising immunotherapeutic protocol for CML. To facilitate the optimization of DCs-based vaccination protocols, we investigated the efficiency of in vitro generation of DCs from bone marrow mononuclear cells of CML patients by clinical reagents of GM-CSF and IFN-α. Bone marrow mononuclear cells were isolated from eight CML patients and CML-DCs were generated in the presence of different cytokines (Group A: GM-CSF for research and IL-4 for research; Group B: GM-CSF for injection and IFN-α for injection) in RMPI-1640 medium containing 10% human AB serum. After 8 days, the morphologic features of CML-DCs were observed and their immunophenotypes were analyzed by flow cytometry. The activity of CML-DCs was determined by evaluating their ability to stimulate allogeneic mixed lymphocyte reaction (allo-MLR) and anti-leukemic cytotoxic T lymphocytes (CTLs). The culture protocols were successful in generating functional CML-DCs from all the CML patients as evidenced by the significant upregulation of CD80, CD86, CD83 HLA-DR and CD1a compared to pre-cultured (p < 0.05), and increased allogeneic T cell stimulating proliferation capacity (p < 0.05). CML-DCs could stimulate a specific anti-leukemia response. In summary, we demonstrate that the combination of clinical reagents GM-CSF and IFN-α induced the generation of DCs that have the ability to stimulate a specific anti-leukemia CTLs response in vitro, indicating their feasibility for clinical vaccination protocols for CML patients.