Hologram recording via spatial density modulation of Nb(Li)(4+/5+) antisites in lithium niobate

Opt Express. 2011 Aug 1;19(16):15322-38. doi: 10.1364/OE.19.015322.

Abstract

Hologram recording is studied in thermally reduced, nominally undoped lithium niobate in the time domain from 10 ns to 100 s by means of intense ns pump laser pulses (λ = 532 nm) and continuous-wave probe light (λ = 785 nm). It is shown that mixed absorption and phase gratings can be recorded within 8 ns that feature diffraction efficiencies up to 23 % with non-exponential relaxation and lifetimes in the ms-regime. The results are explained comprehensively in the frame of the optical generation of a spatial density modulation of Nb(Li)(4+/5+) antisites and the related optical features, i.e. absorption as well as index changes mutually related via the Kramers-Kronig-relation. Implications of our findings, such as the electrooptical properties of small bound Nb(Li)(4+) polarons, the optical features of Nb(Li)(4+):Nb(Nb)(4+) bipolarons, Nb(Nb)(4+) free polarons and O-hole-polarons, the impact of light polarization of pump and probe beams as well as of the polaron density are discussed.

Publication types

  • Research Support, Non-U.S. Gov't