The effect of zinc addition on the oxidation state of cobalt in Co/ZrO2 catalysts

ChemSusChem. 2011 Nov 18;4(11):1679-84. doi: 10.1002/cssc.201100240. Epub 2011 Sep 14.

Abstract

The effect of zinc promotion on the oxidation state of cobalt in Co/ZrO(2) catalysts was investigated and correlated with the activity and selectivity for ethanol steam reforming (ESR). Catalysts were synthesized by applying incipient wetness impregnation and characterized by using Brunauer-Emmett-Teller (BET), temperature-programmed reduction (TPR) measurements, X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Higher ethanol conversion and lower CH(4) selectivity are observed for the Co/ZrO(2) catalyst promoted with Zn as compared to the Co/ZrO(2) catalyst alone. Addition of Zn inhibits the oxidation of metallic cobalt (Co(0) ) particles and results in a higher ratio of Co(0) /Co(2+) in the Zn-promoted Co/ZrO(2) catalyst. These results suggest that metallic cobalt (Co(0) ) is more active than Co(2+) in the ethanol conversion through dehydrogenation and that Co(2+) may play a role in the CH(4) formation. TPR measurements, on the other hand, reveal that Zn addition inhibits the reduction of Co(2+) and Co(3+) , which would lead to the false conclusion that oxidized Co is required to reduce the CH(4) formation. Therefore, TPR measurements may not be appropriate to correlate the degree of metal reducibility (in this case Co(0)) with the catalyst activity for reactions, such as ESR, where oxidizing conditions exist.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Catalysis
  • Cobalt / chemistry*
  • Ethanol / chemistry
  • Oxidation-Reduction
  • Photoelectron Spectroscopy
  • Temperature
  • X-Ray Diffraction
  • Zinc / chemistry*
  • Zirconium / chemistry*

Substances

  • Cobalt
  • Ethanol
  • Zirconium
  • Zinc
  • zirconium oxide