Site-preferential design of itinerant ferromagnetic borides: experimental and theoretical investigation of MRh6B3 (M = Fe, Co)

Inorg Chem. 2011 Oct 17;50(20):10303-9. doi: 10.1021/ic2013655. Epub 2011 Sep 12.

Abstract

Single-phase polycrystalline samples of the compounds MRh(6)B(3) (M = Fe, Co) as well as single crystals of CoRh(6)B(3) have been synthesized by arc-melting the elements under a purified argon atmosphere in a water-cooled copper crucible. The characterization of the new phases was achieved by using single-crystal and powder X-ray diffraction as well as EDX measurements. The two phases are isotypic and crystallize in the hexagonal Th(7)Fe(3) structure type (space group P6(3)mc, no. 186, Z = 2). In this structure, the magnetically active atoms (Fe, Co) are preferentially found on only one of the three available rhodium sites, and together with rhodium they build a three-dimensional network of interconnected (Rh/M)(3) triangles. Magnetic properties investigations show that both phases order ferromagnetically below Curie temperatures of 240 K (for FeRh(6)B(3)) and 150 K (for CoRh(6)B(3)). First-principles DFT calculations correctly reproduce not only the lattice parameters but also the ground state magnetic ordering in the two phases. These calculations also show that the long-range magnetic ordering in both phases occurs via indirect ferromagnetic coupling between the iron atoms mediated by rhodium. This magnetic structural model also predicts the saturation magnetizations to be 4.02 μ(B) for FeRh(6)B(3) (3.60 μ(B) found experimentally) and 2.75 μ(B) for CoRh(6)B(3). Furthermore, both phases are predicted to be metallic conductors as expected for these intermetallic borides.