Gaussian interaction profile kernels for predicting drug-target interaction

Bioinformatics. 2011 Nov 1;27(21):3036-43. doi: 10.1093/bioinformatics/btr500. Epub 2011 Sep 4.

Abstract

Motivation: The in silico prediction of potential interactions between drugs and target proteins is of core importance for the identification of new drugs or novel targets for existing drugs. However, only a tiny portion of all drug-target pairs in current datasets are experimentally validated interactions. This motivates the need for developing computational methods that predict true interaction pairs with high accuracy.

Results: We show that a simple machine learning method that uses the drug-target network as the only source of information is capable of predicting true interaction pairs with high accuracy. Specifically, we introduce interaction profiles of drugs (and of targets) in a network, which are binary vectors specifying the presence or absence of interaction with every target (drug) in that network. We define a kernel on these profiles, called the Gaussian Interaction Profile (GIP) kernel, and use a simple classifier, (kernel) Regularized Least Squares (RLS), for prediction drug-target interactions. We test comparatively the effectiveness of RLS with the GIP kernel on four drug-target interaction networks used in previous studies. The proposed algorithm achieves area under the precision-recall curve (AUPR) up to 92.7, significantly improving over results of state-of-the-art methods. Moreover, we show that using also kernels based on chemical and genomic information further increases accuracy, with a neat improvement on small datasets. These results substantiate the relevance of the network topology (in the form of interaction profiles) as source of information for predicting drug-target interactions.

Availability: Software and Supplementary Material are available at http://cs.ru.nl/~tvanlaarhoven/drugtarget2011/.

Contact: tvanlaarhoven@cs.ru.nl; elenam@cs.ru.nl.

Supplementary information: Supplementary data are available at Bioinformatics online.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Artificial Intelligence*
  • Drug Delivery Systems
  • Drug Discovery / methods*
  • Genomics