The former annotated human pseudogene dihydrofolate reductase-like 1 (DHFRL1) is expressed and functional

Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15157-62. doi: 10.1073/pnas.1103605108. Epub 2011 Aug 26.

Abstract

Human dihydrofolate reductase (DHFR) was previously thought to be the only enzyme capable of the reduction of dihydrofolate to tetrahydrofolate; an essential reaction necessary to ensure a continuous supply of biologically active folate. DHFR has been studied extensively from a number of perspectives because of its role in health and disease. Although the presence of a number of intronless DHFR pseudogenes has been known since the 1980s, it was assumed that none of these were expressed or functional. We show that humans do have a second dihydrofolate reductase enzyme encoded by the former pseudogene DHFRP4, located on chromosome 3. We demonstrate that the DHFRP4, or dihydrofolate reductase-like 1 (DHFRL1), gene is expressed and shares some commonalities with DHFR. Recombinant DHFRL1 can complement a DHFR-negative phenotype in bacterial and mammalian cells but has a lower specific activity than DHFR. The K(m) for NADPH is similar for both enzymes but DHFRL1 has a higher K(m) for dihydrofolate when compared to DHFR. The need for a second reductase with lowered affinity for its substrate may fulfill a specific cellular requirement. The localization of DHFRL1 to the mitochondria, as demonstrated by confocal microscopy, indicates that mitochondrial dihydrofolate reductase activity may be optimal with a lowered affinity for dihydrofolate. We also found that DHFRL1 is capable of the same translational autoregulation as DHFR by binding to its own mRNA; with each enzyme also capable of replacing the other. The identification of DHFRL1 will have implications for previous research involving DHFR.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CHO Cells
  • Cricetinae
  • Cricetulus
  • Electrophoretic Mobility Shift Assay
  • Escherichia coli / metabolism
  • Fluorescence
  • Genetic Complementation Test
  • HEK293 Cells
  • Humans
  • Kinetics
  • Molecular Sequence Annotation*
  • Phenotype
  • Protein Binding
  • Pseudogenes / genetics*
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Recombinant Proteins / metabolism
  • Reproducibility of Results
  • Reverse Transcriptase Polymerase Chain Reaction
  • Sequence Analysis, DNA
  • Subcellular Fractions / metabolism
  • Tetrahydrofolate Dehydrogenase / genetics*
  • Tetrahydrofolate Dehydrogenase / metabolism*
  • Tryptophan / metabolism

Substances

  • RNA, Messenger
  • Recombinant Proteins
  • Tryptophan
  • Tetrahydrofolate Dehydrogenase