Cardiac arrest and therapeutic hypothermia decrease isoform-specific cytochrome P450 drug metabolism

Drug Metab Dispos. 2011 Dec;39(12):2209-18. doi: 10.1124/dmd.111.040642. Epub 2011 Aug 25.

Abstract

Mild therapeutic hypothermia is emerging clinically as a neuroprotection therapy for individuals experiencing cardiac arrest (CA); however, its effects combined with disease pathogenesis on drug disposition and response have not been fully elucidated. We determined the activities of four major hepatic-metabolizing enzymes (CYP3A, CYP2C, CYP2D, and CYP2E) during hypothermia after experimental CA in rats by evaluating the pharmacokinetics of their probe drugs as a function of altered body temperature. Animals were randomized into sham normothermia (37.5-38°C), CA normothermia, sham hypothermia (32.5-33°C), and CA hypothermia groups. Probe drugs (midazolam, diclofenac, dextromethorphan, and chlorzoxazone) were given simultaneously by intravenous bolus after temperature stabilization. Multiple blood samples were collected between 0 and 8 h after drug administration. Pharmacokinetic (PK) analysis was conducted using a noncompartmental approach and population PK modeling. Noncompartmental analysis showed that the clearance of midazolam (CYP3A) in CA hypothermia was reduced from sham normothermia rats (681.6 ± 190.0 versus 1268.8 ± 348.9 ml · h(-1) · kg(-1), p < 0.05). The clearance of chlorzoxazone (CYP2E) in CA hypothermia was also reduced from sham normothermia rats (229.6 ± 75.6 versus 561.89 ± 215.9 ml · h(-1) · kg(-1), p < 0.05). Population PK analysis further demonstrated the decreased clearance of midazolam (CYP3A) was associated with CA injury (p < 0.05). The decreased clearance of chlorzoxazone (CYP2E1) was also associated with CA injury (p < 0.01). Hypothermia was found to be associated with the decreased volume of distribution of midazolam (V(1)), dextromethorphan (V(1)), and peripheral compartment for chlorzoxazone (V(2)) (p < 0.05, p < 0.05, and p < 0.01, respectively). Our data indicate that hypothermia, CA, and their interaction alter cytochrome P450-isoform specific activities in an isoform-specific manner.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Body Temperature
  • Chromatography, Liquid
  • Cytochrome P-450 Enzyme System / metabolism*
  • Heart Arrest / enzymology
  • Heart Arrest / therapy*
  • Hypothermia, Induced*
  • Isoenzymes / metabolism*
  • Male
  • Mass Spectrometry
  • Pharmacokinetics
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Isoenzymes
  • Cytochrome P-450 Enzyme System