Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability

J Am Chem Soc. 2011 Sep 28;133(38):14998-5007. doi: 10.1021/ja203388r. Epub 2011 Sep 6.

Abstract

Mesoporous layer-by-layer ordered nanohybrids highly active for visible light-induced O(2) generation are synthesized by self-assembly between oppositely charged 2D nanosheets of Zn-Cr-layered double hydroxide (Zn-Cr-LDH) and layered titanium oxide. The layer-by-layer ordering of two kinds of 2D nanosheets is evidenced by powder X-ray diffraction and cross-sectional high resolution-transmission electron microscopy. Upon the interstratification process, the original in-plane atomic arrangements and electronic structures of the component nanosheets remain intact. The obtained heterolayered nanohybrids show a strong absorption of visible light and a remarkably depressed photoluminescence signal, indicating an effective electronic coupling between the two component nanosheets. The self-assembly between 2D inorganic nanosheets leads to the formation of highly porous stacking structure, whose porosity is controllable by changing the ratio of layered titanate/Zn-Cr-LDH. The resultant heterolayered nanohybrids are fairly active for visible light-induced O(2) generation with a rate of ∼1.18 mmol h(-1) g(-1), which is higher than the O(2) production rate (∼0.67 mmol h(-1) g(-1)) by the pristine Zn-Cr-LDH material, that is, one of the most effective visible light photocatalysts for O(2) production, under the same experimental condition. This result highlights an excellent functionality of the Zn-Cr-LDH-layered titanate nanohybrids as efficient visible light active photocatalysts. Of prime interest is that the chemical stability of the Zn-Cr-LDH is significantly improved upon the hybridization, a result of the protection of the LDH lattice by highly stable titanate layer. The present findings clearly demonstrate that the layer-by-layer-ordered assembly between inorganic 2D nanosheets is quite effective not only in improving the photocatalytic activity of the component semiconductors but also in synthesizing novel porous LDH-based hybrid materials with improved chemical stability.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalysis
  • Chromium / chemistry*
  • Hydroxides / chemistry*
  • Light*
  • Luminescence
  • Membranes, Artificial
  • Nanostructures / chemistry*
  • Nanotechnology
  • Oxides / chemistry*
  • Oxygen / chemistry
  • Particle Size
  • Photochemical Processes
  • Porosity
  • Surface Properties
  • Titanium / chemistry
  • Zinc / chemistry*

Substances

  • Hydroxides
  • Membranes, Artificial
  • Oxides
  • Chromium
  • hydroxide ion
  • Titanium
  • Zinc
  • Oxygen