Synthesis of cuprous oxide nanocomposite electrodes by room-temperature chemical partial reduction

Dalton Trans. 2011 Oct 7;40(37):9498-503. doi: 10.1039/c1dt10842e. Epub 2011 Aug 17.

Abstract

We demonstrate a template-free synthetic approach for the preparation of a highly conductive Cu/Cu(2)O nanocomposite electrode by a chemical reduction process. Cu(2)O octahedra were prepared through chemical dehydrogenation of as-synthesized Cu(OH)(2) nanowire precursors. To provide a sufficiently electron-conducting network, the Cu(2)O particles were transformed into Cu/Cu(2)O nanocomposites by an intentional reduction process. The Cu/Cu(2)O nanocomposite electrodes showed enhanced cycling performance compared to Cu(2)O particles. Furthermore, their rate capabilities were superior to those of their mechanically mixed Cu/Cu(2)O counterparts. This enhanced electrochemical performance of the hybrid Cu/Cu(2)O nanocomposites was ascribed to the formation of homogeneous nanostructures, offering an efficient electron-transport path provided by the presence of highly dispersed Cu nanoparticles.