Formation of bimetallic Au-Pd and Au-Pt nanoparticles under hydrothermal conditions and microwave irradiation

Langmuir. 2011 Sep 20;27(18):11697-703. doi: 10.1021/la202686x. Epub 2011 Aug 25.

Abstract

The reduction of chlorocomplexes of gold(III) from muriatic solutions by nanocrystal powders of palladium and platinum at 110 and 130 °C under hydrothermal conditions and the action of microwave irradiation has been investigated. The structure and composition of the solid phase have been characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and chemical methods. Bimetallic particles with a core-shell structure have been revealed. The obtained particles are established to have a core of the metal reductant covered with a substitutional solid (Au, Pd) solution in case of palladium, and isolated by a gold layer in the case of platinum. The main reason for such a difference is the ratio between the rates of aggregation and reduction. It has been shown by the example of the Au-Pd system that the use of microwave irradiation allows us not only to accelerate the synthesis of particles but also to obtain more homogeneous materials in comparison with conventional heating.