The Fechnerian idea

Am J Psychol. 2011 Summer;124(2):127-40. doi: 10.5406/amerjpsyc.124.2.0127.

Abstract

From the principle that subjective dissimilarity between 2 stimuli is determined by their ratio, Fechner derives his logarithmic law in 2 ways. In one derivation, ignored and forgotten in modern accounts of Fechner's theory, he formulates the principle in question as a functional equation and reduces it to one with a known solution. In the other derivation, well known and often criticized, he solves the same functional equation by differentiation. Both derivations are mathematically valid (the much-derided "expedient principle" mentioned by Fechner can be viewed as merely an inept way of pointing at a certain property of the differentiation he uses). Neither derivation uses the notion of just-noticeable differences. But if Weber's law is accepted in addition to the principle in question, then the dissimilarity between 2 stimuli is approximately proportional to the number of just-noticeable differences that fit between these stimuli: The smaller Weber's fraction the better the approximation, and Weber's fraction can always be made arbitrarily small by an appropriate convention. We argue, however, that neither the 2 derivations of Fechner's law nor the relation of this law to thresholds constitutes the essence of Fechner's approach. We see this essence in the idea of additive cumulation of sensitivity values. Fechner's work contains a surprisingly modern definition of sensitivity at a given stimulus: the rate of growth of the probability-of-greater function, with this stimulus serving as a standard. The idea of additive cumulation of sensitivity values lends itself to sweeping generalizations of Fechnerian scaling.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Differential Threshold*
  • Mathematics
  • Psychophysics*