Duration channels mediate human time perception

Proc Biol Sci. 2012 Feb 22;279(1729):690-8. doi: 10.1098/rspb.2011.1131. Epub 2011 Aug 10.

Abstract

The task of deciding how long sensory events seem to last is one that the human nervous system appears to perform rapidly and, for sub-second intervals, seemingly without conscious effort. That these estimates can be performed within and between multiple sensory and motor domains suggest time perception forms one of the core, fundamental processes of our perception of the world around us. Given this significance, the current paucity in our understanding of how this process operates is surprising. One candidate mechanism for duration perception posits that duration may be mediated via a system of duration-selective 'channels', which are differentially activated depending on the match between afferent duration information and the channels' 'preferred' duration. However, this model awaits experimental validation. In the current study, we use the technique of sensory adaptation, and we present data that are well described by banks of duration channels that are limited in their bandwidth, sensory-specific, and appear to operate at a relatively early stage of visual and auditory sensory processing. Our results suggest that many of the computational principles the nervous system applies to coding visual spatial and auditory spectral information are common to its processing of temporal extent.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation
  • Adaptation, Physiological
  • Adult
  • Auditory Perception
  • Humans
  • Models, Theoretical*
  • Time Perception*
  • Visual Perception