Evolution of quantum criticality in CeNi(9-x)Cu(x)Ge(4)

J Phys Condens Matter. 2009 Jun 10;21(23):235604. doi: 10.1088/0953-8984/21/23/235604. Epub 2009 May 15.

Abstract

Crystal structure, specific heat, thermal expansion, magnetic susceptibility and electrical resistivity studies of the heavy fermion system CeNi(9-x)Cu(x)Ge(4) (0≤x≤1) reveal a continuous tuning of the ground state by Ni/Cu substitution from an effectively fourfold-degenerate non-magnetic Kondo ground state of CeNi(9)Ge(4) (with pronounced non-Fermi-liquid features) towards a magnetically ordered, effectively twofold-degenerate ground state in CeNi(8)CuGe(4) with T(N) = 175 ± 5 mK. Quantum critical behavior, [Formula: see text], is observed for [Formula: see text]. Hitherto, CeNi(9-x)Cu(x)Ge(4) represents the first system where a substitution-driven quantum phase transition is connected not only with changes of the relative strength of the Kondo effect and RKKY interaction, but also with a reduction of the effective crystal field ground state degeneracy.