Liposomes for cryopreservation of bovine sperm

Theriogenology. 2011 Nov;76(8):1465-72. doi: 10.1016/j.theriogenology.2011.06.015. Epub 2011 Aug 6.

Abstract

In this study, the effect of various unilamellar liposomes on cryopreservation of bovine spermatozoa has been investigated. Liposomes were composed of saturated lipids with various acyl chain lengths: DSPC (18:0), DPPC (16:0), DMPC (14:0), or DLPC (12:0). Alternatively, liposomes were prepared using unsaturated egg phosphatidylcholine (EPC) or DOPC (18:1, neutral), alone or in combination with lipids with various head groups: DOPS (negatively charged), DOPG (negatively charged), and DOPE (neutral). Fourier transform infrared spectroscopy studies showed that bovine sperm membranes display a gradual phase transition from 10 to 24 (o)C. Phase transition temperatures of the liposomes varied from -20 to +53 (o)C. Sperm was incubated in the presence of liposomes for either 6 or 24 h at 4 °C prior to freezing. Postfreeze survival rates were determined based on the percentage of progressively motile cells as well as the percentage of acrosome- and plasma membrane-intact cells. With DOPC liposomes a postthaw progressive motility of 43% was obtained compared with 59% using standard egg yolk freezing extender. Postthaw progressive motility increased up to 52% using DOPC:DOPG (9:1) liposomes, whereas DOPC:DOPS or DOPC:DOPE liposomes did not increase survival compared with DOPC liposomes. Among the saturated lipids, only DMPC was found to increase cryosurvival, up to 44% based on progressive motility. DLPC liposomes caused a complete loss in cell viability, already prior to freezing, whereas DPPC and DSPC liposomes neither positively nor negatively affected cryosurvival. Taken together, the higher postthaw survival obtained with DOPC:DOPG liposomes as compared with DOPC liposomes can likely be attributed to increased liposome-sperm interactions between the charged phosphatidylglycerol groups and charged regions in the sperm membranes. Interestingly, the lipid phase state of the liposomes during preincubation is not the decisive factor for their cryoprotective action.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cattle / physiology*
  • Cryopreservation / methods
  • Cryopreservation / veterinary*
  • Liposomes*
  • Male
  • Semen Preservation / methods
  • Semen Preservation / veterinary*
  • Spermatozoa / physiology*

Substances

  • Liposomes