Selective regulation of IP3-receptor-mediated Ca2+ signaling and apoptosis by the BH4 domain of Bcl-2 versus Bcl-Xl

Cell Death Differ. 2012 Feb;19(2):295-309. doi: 10.1038/cdd.2011.97. Epub 2011 Aug 5.

Abstract

Antiapoptotic B-cell lymphoma 2 (Bcl-2) targets the inositol 1,4,5-trisphosphate receptor (IP(3)R) via its BH4 domain, thereby suppressing IP(3)R Ca(2+)-flux properties and protecting against Ca(2+)-dependent apoptosis. Here, we directly compared IP(3)R inhibition by BH4-Bcl-2 and BH4-Bcl-Xl. In contrast to BH4-Bcl-2, BH4-Bcl-Xl neither bound the modulatory domain of IP(3)R nor inhibited IP(3)-induced Ca(2+) release (IICR) in permeabilized and intact cells. We identified a critical residue in BH4-Bcl-2 (Lys17) not conserved in BH4-Bcl-Xl (Asp11). Changing Lys17 into Asp in BH4-Bcl-2 completely abolished its IP(3)R-binding and -inhibitory properties, whereas changing Asp11 into Lys in BH4-Bcl-Xl induced IP(3)R binding and inhibition. This difference in IP(3)R regulation between BH4-Bcl-2 and BH4-Bcl-Xl controls their antiapoptotic action. Although both BH4-Bcl-2 and BH4-Bcl-Xl had antiapoptotic activity, BH4-Bcl-2 was more potent than BH4-Bcl-Xl. The effect of BH4-Bcl-2, but not of BH4-Bcl-Xl, depended on its binding to IP(3)Rs. In agreement with the IP(3)R-binding properties, the antiapoptotic activity of BH4-Bcl-2 and BH4-Bcl-Xl was modulated by the Lys/Asp substitutions. Changing Lys17 into Asp in full-length Bcl-2 significantly decreased its binding to the IP(3)R, its ability to inhibit IICR and its protection against apoptotic stimuli. A single amino-acid difference between BH4-Bcl-2 and BH4-Bcl-Xl therefore underlies differential regulation of IP(3)Rs and Ca(2+)-driven apoptosis by these functional domains. Mutating this residue affects the function of Bcl-2 in Ca(2+) signaling and apoptosis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Amino Acids / metabolism
  • Animals
  • Apoptosis*
  • Calcium / metabolism*
  • Calcium Signaling*
  • Cytoprotection
  • Immobilized Proteins / metabolism
  • Inositol 1,4,5-Trisphosphate Receptors / chemistry*
  • Inositol 1,4,5-Trisphosphate Receptors / metabolism*
  • Mice
  • Molecular Sequence Data
  • Mutation / genetics
  • Protein Binding
  • Protein Structure, Tertiary
  • Proto-Oncogene Proteins c-bcl-2 / chemistry
  • Proto-Oncogene Proteins c-bcl-2 / metabolism*
  • Rats
  • Sequence Alignment
  • Structure-Activity Relationship
  • bcl-X Protein / chemistry
  • bcl-X Protein / metabolism*

Substances

  • Amino Acids
  • Immobilized Proteins
  • Inositol 1,4,5-Trisphosphate Receptors
  • Proto-Oncogene Proteins c-bcl-2
  • bcl-X Protein
  • Calcium