Structural, magnetic, and electrical studies on polycrystalline transition-metal-doped BiFeO(3) thin films

J Phys Condens Matter. 2009 Jan 21;21(3):036001. doi: 10.1088/0953-8984/21/3/036001. Epub 2008 Dec 11.

Abstract

We have synthesized a range of transition-metal-doped BiFeO(3) thin films on conducting silicon substrates using a spin-coating technique from metal-organic precursor solutions. Bismuth, iron and transition-metal-organic solutions were mixed in the appropriate ratios to produce 3% transition-metal-doped samples. X-ray diffraction studies show that the samples annealed in a nitrogen atmosphere crystallize in a rhombohedrally distorted BiFeO(3) structure with no evidence for any ferromagnetic secondary phase formation. We find evidence for the disappearance of the 404 cm(-1) Raman mode for certain dopants indicative of structural distortions. The saturation magnetization of these BiFeO(3) films has been found to increase on doping with transition metal ions, reaching a maximum value of 8.5 emu cm(-3) for the Cr-doped samples. However, leakage current measurements find that the resistivity of the films typically decreases with transition metal doping. We find no evidence for any systematic variation of the electric or magnetic properties of BiFeO(3) depending on the transition metal dopant, suggesting that these properties are determined mainly by extrinsic effects arising from defects or grain boundaries.