Gynodioecy to dioecy: are we there yet?

Ann Bot. 2012 Feb;109(3):531-43. doi: 10.1093/aob/mcr170. Epub 2011 Aug 1.

Abstract

Background: The 'gynodioecy-dioecy pathway' is considered to be one of the most important evolutionary routes from hermaphroditism to separate sexes (dioecy). Despite a large accumulation of evidence for female seed fertility advantages in gynodioecious species (females and hermaphrodites coexist) in support of the first step in the gynodioecy-dioecy pathway, we still have very little evidence for the second step, i.e. the transition from gynodioecy to dioecy.

Scope: We review the literature to evaluate whether basic predictions by theory are supported. To establish whether females' seed fertility advantage and frequencies are sufficient to favour the invasion of males, we review these for species along the gynodioecy-dioecy pathway published in the last 5 years. We then review the empirical evidence for predictions deriving from the second step, i.e. hermaphrodites' male fertility increases with female frequency, selection favours greater male fertility in hermaphrodites in gynodioecious species, and, where males and hermaphrodites coexist with females (subdioecy), males have greater male fertility than hermaphrodites. We review how genetic control and certain ecological features (pollen limitation, selfing, plasticity in sex expression and antagonists) influence the trajectory of a population along the gynodioecy-dioecy pathway.

Conclusions: Females tend to have greater seed fertility advantages over hermaphrodites where the two coexist, and this advantage is positively correlated with female frequency across species, as predicted by theory. A limited number of studies in subdioecious species have demonstrated that males have an advantage over hermaphrodites, as also predicted by theory. However, less evidence exists for phenotypic selection to increase male traits of hermaphrodites or for increasing male function of hermaphrodites in populations with high female frequency. A few key case studies underline the importance of examining multiple components of male fertility and the roles of pollen limitation, selfing and plasticity, when evaluating advantages. We conclude that we do not yet have a full understanding of the transition from gynodioecy to dioecy.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Biological Evolution
  • Ecology
  • Fertility
  • Flowers / physiology*
  • Hermaphroditic Organisms / genetics
  • Hermaphroditic Organisms / physiology*
  • Inbreeding
  • Magnoliopsida / genetics
  • Magnoliopsida / physiology*
  • Pollination
  • Reproduction
  • Seeds / genetics
  • Seeds / physiology
  • Selection, Genetic
  • Species Specificity