Influence of a probiotic soy product on fecal microbiota and its association with cardiovascular risk factors in an animal model

Lipids Health Dis. 2011 Jul 29:10:126. doi: 10.1186/1476-511X-10-126.

Abstract

Background: Previous work showed that daily ingestion of an aqueous soy extract fermented with Enterococcus faecium CRL 183 and Lactobacillus helveticus 416, supplemented or not with isoflavones, reduced the total cholesterol and non-HDL-cholesterol levels, increased the high-density lipoprotein (HDL) concentration and inhibited the raising of autoantibody against oxidized low-density lipoprotein (ox-LDL Ab) and the development of atherosclerotic lesions.

Objective: The aim of this study was to characterize the fecal microbiota in order to investigate the possible correlation between fecal microbiota, serum lipid parameters and atherosclerotic lesion development in rabbits with induced hypercholesterolemia, that ingested the aqueous soy extract fermented with Enterococcus faecium CRL 183 and Lactobacillus helveticus 416.

Methods: The rabbits were randomly allocated to five experimental groups (n = 6): control (C), hypercholesterolemic (H), hypercholesterolemic plus unfermented soy product (HUF), hypercholesterolemic plus fermented soy product (HF) and hypercholesterolemic plus isoflavone-supplemented fermented soy product (HIF). Lipid parameters and microbiota composition were analyzed on days 0 and 60 of the treatment and the atherosclerotic lesions were quantified at the end of the experiment. The fecal microbiota was characterized by enumerating the Lactobacillus spp., Bifidobacterium spp., Enterococcus spp., Enterobacteria and Clostridium spp. populations.

Results: After 60 days of the experiment, intake of the probiotic soy product was correlated with significant increases (P < 0.05) on Lactobacillus spp., Bifidobacterium spp. and Enterococcus spp. and a decrease in the Enterobacteria population. A strong correlation was observed between microbiota composition and lipid profile. Populations of Enterococcus spp., Lactobacillus spp. and Bifidobacterium spp. were negatively correlated with total cholesterol, non-HDL-cholesterol, autoantibodies against oxidized LDL (oxLDL Ab) and lesion size. HDL-C levels were positively correlated with Lactobacillus spp., Bifidobacterium spp., and Enterococcus spp. populations.

Conclusion: In conclusion, daily ingestion of the probiotic soy product, supplemented or not with isoflavones, may contribute to a beneficial balance of the fecal microbiota and this modulation is associated with an improved cholesterol profile and inhibition of atherosclerotic lesion development.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Aorta / drug effects
  • Aorta / pathology
  • Atherosclerosis / blood
  • Atherosclerosis / etiology
  • Atherosclerosis / prevention & control*
  • Bacterial Load / drug effects
  • Cholesterol / adverse effects
  • Drug Evaluation, Preclinical
  • Enterococcus faecium
  • Feces / microbiology*
  • Fermentation
  • Glycine max*
  • Hypercholesterolemia / blood
  • Hypercholesterolemia / chemically induced
  • Hypercholesterolemia / complications
  • Lipids / blood
  • Male
  • Metagenome / drug effects*
  • Plant Extracts / pharmacology*
  • Probiotics / pharmacology*
  • Rabbits

Substances

  • Lipids
  • Plant Extracts
  • Cholesterol