Fast side chain replacement in proteins using a coarse-grained approach for evaluating the effects of mutation during evolution

J Mol Evol. 2011 Aug;73(1-2):23-33. doi: 10.1007/s00239-011-9454-3. Epub 2011 Jul 29.

Abstract

For high-throughput structural genomic and evolutionary bioinformatics approaches, there is a clear need for fast methods to evaluate substitutions structurally. Coarse-grained methods are both powerful and fast, and a coarse-grained approach to position the substituted side chains is presented. Through the application of a coarse-grained method, a speed-up on the single- residue replacement, of at least sevenfold is achieved compared with modern all-atom approaches. At the same time, this approach maintains a small median RMSD from the leading all-atom approach (as measured in coarse-grained space), and predicts the conformation of point mutants with similar accuracy and generates biologically realistic side chain angles. This method is also substantially more predictable in its run time, making it useful for high-throughput studies of protein structural evolution. To demonstrate the utility of this method, it has been implemented in a forward simulation of sequences threaded through the SH2 domains, with selective pressures to fold and bind specifically. The relative substitution rates across the protein structure and at the binding interface are reflective of those observed in SH2 domain evolution. The algorithm has been implemented in C++, with the source code and binaries (currently supported for Linux systems) freely available as SARA at http://www.wyomingbioinformatics.org/LiberlesGroup/SARA .

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Amino Acid Substitution*
  • Computer Simulation
  • Evolution, Molecular*
  • Internet
  • Models, Molecular*
  • Mutation*
  • Protein Conformation
  • Proteins / chemistry*
  • Proteins / genetics
  • Software

Substances

  • Proteins